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Trend Free Orthogonal Arrays using some 
Linear Codes 
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Abstract : A method for constructing trend free orthogonal arrays using the parity check matrix of  a linear code  is 

proposed. This method can easily be used to construct the trend free orthogonal arrays of higher level and higher 

strength.  
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1. INTRODUCTION 

One  of  the  basic principles  in experimentation is 

randomization of treatments. But randomization  may not 

always give the efficient results. For instance,  there may be  

an  unknown or uncontrollable trend effect which is highly 

correlated with the order in which the observations are 

obtained. In such situations, one may prefer to assign 

treatments to experimental units in such a way that the usual 

estimates(main or interaction effects) for the factorial effects 

of interest are not affected by unknown trend. Such run 

orders are called trend free run orders. When trend free 

effects are considered in factorial experiments, the order of 

experimental runs is essential  and  one may use  orthogonal 

arrays  in such situations.  Orthogonal Arrays  introduced by 

[10], [11], are of importance  because of their  role in 

experimental designs as universally optimal fractional 

factorials. Orthogonal arrays have gained a renewed interest 

in industrial experimentation for product improvement, 

mainly after the work by [18] and his colleagues. 

Asymmetric Orthogonal arrays also introduced by [12]  , 

have been used extensively in industrial experiments for 

quality improvement and their use in other experimental 

situations has also been widespread. These arrays  are  

closely related to combinatorics, finite fields, finite geometry  

and  error-correcting  codes. For details see [7] . To construct 

the trend free run orders for orthogonal arrays, one needs to 

derive the trend free property in the columns of  an array to 

gain an appropriate order. [17], [15],  [16] ,[1] proposed  

*corresponding author 

algorithms to construct trend free run orders of orthogonal 

arrays. [13] constructed  trend free  orthogonal arrays using  

a class of   formally self dual linear  codes given by [3].  

. In this paper, we present a systematic  method to construct 

trend free run orders for orthogonal arrays using the parity 

check matrices of  linear codes and the results given  by [4]. 

The Trend  free orthogonal arrays are constructed using  

Reed Muller , Cyclic , BCH,  MDS  and Golay codes.  

 The paper is organized as follows. Section 2 gives the 

preliminaries required. Section 3 gives a brief description of 

coding theory. The construction technique for trend free 

symmetric and asymmetric orthogonal arrays  is presented in 

Section 4 and Section 5 respectively. 

2. PRELIMINARIES 

Definition 1: An Orthogonal Array  OA(N, n, q
1 
× q

2 
× 

……× q
n
, g) of strength g, 2 ≤ g ≤ n is an N×n matrix having 

q
i
  (≥2) distinct symbols in the i

th
 column, i =1,2,…,n such 

that in every N×g submatrix, all possible combinations of 

symbols appear equally often as a row. In particular, if q
1 

=….. ……= q
n  

=  q, the orthogonal array is called  a 

symmetric orthogonal array and is denoted by OA(N, n, q, g) 

otherwise, the array is called asymmetric orthogonal array. 

Definition 2.: Let Y = �𝑦1 ,𝑦2 , …𝑦𝑁 �
′
denotes the  ordered  

vector  of  observations, and  𝑇𝑥 =  (1𝑥 , 2𝑥 , …𝑁𝑥)′ for x = 

0,1,2,... 𝑣  be the N × 1 vector of trend coefficients and let 𝑎𝑖 R  
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 be the contrast for main effect Ai ; i=1,2,...n, in the run 

order. Then the quantity 𝑎𝑖′𝑇𝑥   is known as the time count for 

main effect Ai ..   

A necessary and sufficient condition for a main effect 

contrast a to be 𝑣 − trend free is that  

                 𝑎′ 𝑇𝑥  = 0      ∀ 𝑥 = 0,1,2, , . . , 𝑣           (2.1) 

In general, an N × 1 vector 𝑎  is called v-trend free  if (2.1) 

holds.  

Definition 3: A  run order is optimal for the estimation 

of the factor  effects of interest in the presence of 

nuisance v-degree polynomial trend if  

𝑿′𝑻 = 𝟎                                    (2.2) 

Where   X   is an  N×n matrix of factor effect 

coefficients  and T is an N×v matrix of polynomial trend 

coefficients. If  (2.2) is satisfied then   the run order is 

said to be  v trend free. If x is any column  of     X    𝑎nd 

t is any column of T then the usual inner product 𝐱′𝐭  is 

called the time count between x and t. Criterion (2.2) 

states that all the time count are zero for optimal run 

order. 

3. LINEAR CODES  

A linear [n,k,d]
q
 code C over GF(q), where  q is a prime or a 

prime power, n is the length, k is the dimension and d is the 

minimum distance, is a k-dimensional subspace of the n-

dimensional vector space V(n,q) over GF(q). The elements 

of C are called codewords. The minimum distance d of a 

code is the smallest number of positions in which two 

different codewords of  C differ. Equivalently, d is the 

smallest number of nonzero symbols in any nonzero 

codeword of C. A linear code may be concisely specified by  

a k×n generator matrix G whose rows form a basis for the 

code. The standard form of the generator matrix is 

      G = [ kI | B ] 

where B is a  k × (n − k) matrix with entries from GF(q). 

The dual code C⊥ of the [n,k,d]
q
 code C is an [n,n-k,,d⊥]q 

where C
⊥ = { e∈ V(n,q) | e.ɵ =0 for all ɵ∈ C}. This has an 

(n-k)×n generator matrix H which is called the parity check 

matrix of the code C. If the generator matrix is given in the 

standard form, the corresponding parity check matrix is 

given as 

- 𝐻 = (−𝐵𝑛−𝑘×𝑘  
𝑇 |  𝐼𝑛−𝑘) 

Any  d⊥-1 columns in generator matrix G of  C are linearly  

independent and any d-1 columns in parity check matrix H 

are linearly independent. 

4. TREND FREE RUN ORDERS FOR SYMMETRIC 

ORTHOGONAL ARRAYS 

In this section, we construct trend free run orders for 

symmetric orthogonal arrays. [4] used Generalized Foldover 

Scheme (GFS) to construct trend free designs and also 

discussed conditions for linear trend free effects in GFS. 

These conditions involve the generator matrices. We  give 

below   the  result  of [4] as given in [6]  

Theorem 1:  Let  q (≥2) be  a  prime  or  prime  power.  

Suppose  that  there  exists  an  h × n  matrix  M , with 

elements from GF(q), such that  

i) Every  h  × g submatrix  of  M has rank g and  

ii) Every column of M has at  least  ( v+1) non 

zero  elements.  

Then   there  exists  a symmetric orthogonal array             

OA( qh , n , q ,g) in which all main effects are v-trend free. 

The method of construction in theorem 1 is known as 

Generalised Foldover Technique. The  conditions (i) and 

(ii) in above theorem involve generator matrices. [4] 

provided a method for construction of generator matrices so 

that the systematic run order for a design is obtained using 

GFS. However, their method of construction of generator 

matrices is difficult to use. The generator matrices for the 

construction of systematic run order can also be obtained 

from linear codes. We  now give  a systematic method  to 

construct trend free orthogonal arrays  using  a  parity check 

matrix of  linear  code. 
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Method  Of  Construction : 

I. Consider  the parity check matrix H, of a linear 

[n,k,d]q code. It  is an (n-k)×n  matrix with 

elements from GF(q). 

II. Obtain a matrix  M by retaining  the columns of H 

which have weight ≥ w ( ≥ 2) , say where the weight 

of a column means the number of non-zero 

elements in the column. Let l denotes the number of 

columns with weight w. Then M is a matrix of order 

(n-k)×l. Clearly the matrix M, satisfies  the 

conditions of Theorem 1 with  h = n-k ,  n = l ,     g 

=d-1 and v = w-1. 

III. Let ξ  denote  a (n-k)×1 vector with  enteries  from              

GF(q). Consider all possible  qn-k   distinct choices 

of ξ over  GF(q) and write down  ξʹM one by one to 

obtain the  orthogonal array OA(qn-k ,l, q, g) in 

which all the main effects are v = w-1  trend free. 

Above method of construction can be stated in the form of 

following theorem : 

Theorem 2:  Existence  of a linear [n,k,d]q code implies the 

existence of a symmetric orthogonal array (qh, l, q, d-1) in 

which all main effects are (w-1)-trend free ,  l  is the number 

of columns having  weight ≥ w   and  h=n-k. 

We consider some  linear codes and use Theorem 2 to 

construct orthogonal arrays from these. For details on these 

codes, see [9].  

4.1  REED  MULLER  CODES : 

The rth order binary Reed-Muller code R(r,m) of length n = 

2m, for   0 ≤ r ≤ m, is the set of all vectors f, where 

f(j1,…..jm) is a Boolean function which is a polynomial of 

degree at most r. For any m and any r, 0 ≤ r ≤ m, there is a 

binary rth order RM code R(r,m) with the following 

properties: 

Length n = 2m, dimension k = 1 + �𝑚1 �+…+�𝑚𝑟 � and 

minimum distance 2m-r . The parity check matrix of  RM(r,m) 

code  can be expressed in the form   H = (−𝐵𝑇|𝐼𝑛−𝑘). The 

matrix B has all the columns with weight greater than or 

equal to 2, The dual code of RM(r,m) is RM(m-r-1,m). Any 

 2𝑚−𝑟 − 1 columns in  parity check matrix H are linearly 

independent. Using theorem 2 we get  

OA(22𝑚−𝑘 , 2𝑚 , 2,  2𝑚−𝑟 − 1). The method is explained in 

the following example. 

Example 1:  Let r=2 and m=4. The parity check matrix of 

RM(2,4) is given as  

H =     

⎣
⎢
⎢
⎢
⎡
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0⎦

⎥
⎥
⎥
⎤
 

Retaining the columns of  H which have weight ≥  2, We get 

the following matrix M  

M =     

⎣
⎢
⎢
⎢
⎡
1 0 0 1 0 1 1 0 1 1 1
1 0 1 0 1 0 1 1 0 1 1
1 1 0 0 1 1 0 1 1 0 1
1 1 1 1 0 0 0 1 1 1 0
1 1 1 1 1 1 1 0 0 0 0⎦

⎥
⎥
⎥
⎤
 

Any three columns in M are linearly independent. Hence the 

matrix M satisfy the conditions of Theorem 2, with  q = 2,  

h=5, g = 3, w = 4, l=11.  Let ξ denote a 5×1  vector with 

entries from GF(2). Considering all the 25 possible distinct 

choices of ξ  as W (given below) and on computing  W′M  

we get 25×11 array given in Table 1 which is   an  

OA(25,11,2,3). 

 

𝑊 =  

⎣
⎢
⎢
⎢
⎡
0000000000000000 1111111111111111
00000000111111110000000011111111
00001111000011110000111100001111
00110011001100110011001100110011
01010101010101010101010101010101⎦

⎥
⎥
⎥
⎤
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Table 1: Trend free OA(25,11,2,3) along with T.C. 

 

 

A
1 

A
2 

A
3 

A
4 

A
5 

A
6 

A
7 

A
8 

A
9 

A
10 

A
11 

0 0 0 0 0 0 0 0 0 0 0 
1 0 0 1 0 1 1 0 1 1 1 
1 0 1 0 1 0 1 1 0 1 1 
0 0 1 1 1 1 0 1 1 0 0 
1 1 0 0 1 1 0 1 1 0 1 
0 1 0 1 1 0 1 1 0 1 0 
0 1 1 0 0 1 1 0 1 1 0 
1 1 1 1 0 0 0 0 0 0 1 
1 1 1 1 0 0 0 1 1 1 0 
0 1 1 0 0 1 1 1 0 0 1 
0 1 0 1 1 0 1 0 1 0 1 
1 1 0 0 1 1 0 0 0 1 0 
0 0 1 1 1 1 0 0 0 1 1 
1 0 1 0 1 0 1 0 1 0 0 
1 0 0 1 0 1 1 1 0 0 0 
0 0 0 0 0 0 0 1 1 1 1 
1 1 1 1 1 1 1 0 0 0 0 
0 1 1 0 1 0 0 0 1 1 1 
0 1 0 1 0 1 0 1 0 1 1 
1 1 0 0 0 0 1 1 1 0 0 
0 0 1 1 0 0 1 1 1 0 1 
1 0 1 0 0 1 0 1 0 1 0 
1 0 0 1 1 0 0 0 1 1 0 
0 0 0 0 1 1 1 0 0 0 1 
0 0 0 0 1 1 1 1 1 1 0 
1 0 0 1 1 0 0 1 0 0 1 
1 0 1 0 0 1 0 0 1 0 1 
0 0 1 1 0 0 1 0 0 1 0 
1 1 0 0 0 0 1 0 0 1 1 
0 1 0 1 0 1 0 0 1 0 0 
0 1 1 0 1 0 0 1 0 0 0 
1 1 1 1 1 1 1 1 1 1 1 

T.C1 0 0 0 0 0 0 0 0 0 0 0 
T.C2 0 0 0 0 0 0 0 0 0 0 0 
 

The array generated  above forms an OA(25,11,2,3). 

Replacing all  zero symbol  in the array  by  -1’s  and 

multiplying with T1 = (1,2,3,…,16)  and  T2 = (12,22,…162) 

for linear and quadratic trend effect respectively ,we   get  

the time counts T.C1 and T.C2   and observe that these are 

zero for all the main effects.  (Table 1). Hence,  we get a 

trend free run order for OA(25,11,2,3) having all the main 

effects linear and quadratic trend free.  

4.2  CYCLIC CODES : 

A linear code over GF(q) is said to be cyclic if whenever  

(c
0
,c

1
,…..,c

n-2
,c

n-1
) is a codeword so also is (c

1
,c

2
,…..,c

n-

1
,c

0
). Cyclic arrays can be described by a single generating 

vector  z = ( z
0
z

1
……….z

n-1
 ) such that the generator matrix 

consists of this vector and its first ( k-1 ) cyclic shifts. The 

generating vector z is represented by a polynomial z(x) = z0 

+ z1X + …+zn-1Xn-1 which is called a  generator polynomial 

for the code. If  a code is cyclic, so is  its  dual,  and  the 

generator  polynomial  of  its dual  can  be  obtained  by  the  

following  result  given  in [9].  

Theorem 3 : If C is a cyclic code of length n over GF(q), 

with generator polynomial z(x), then the dual code C⊥  is 

also cyclic and has generator polynomial 

  𝐡∗(𝐱) =  𝐗
𝐧−𝟏
𝐳∗(𝐱)  

where  z*(x) = X 
deg.z

z(x
-1

) is reciprocal polynomial to z(x). 

Example 2: Let 𝑧(𝑥) =  (𝑥4 + 𝑥 + 1)(𝑥4 + 𝑥3 + 𝑥2 + 𝑥 +

1)  = 1 + 𝑥4 + 𝑥6 + 𝑥7 be the generator polynomial for 

(15,7,5)2 code. Then the generator polynomial for the dual of 

this code is given as  

ℎ(𝑥) =  𝑥7(1 + 𝑥−4 + 𝑥−6 + 𝑥−7) =  1 + 𝑥 + 𝑥3 + 𝑥7   

Hence the parity check matrix of (15,7,5)2 code is obtained  

by writing the coefficients and giving the cyclic shift to the 

coefficients, as given below 

  H =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 𝟏 𝟎 𝟏 𝟎 𝟎 𝟎 𝟏 𝟎 𝟎 𝟎 0 0 0 0
0 𝟏 𝟏 𝟎 𝟏 𝟎 𝟎 𝟎 𝟏 𝟎 𝟎 0 0 0 0
0 𝟎 𝟏 𝟏 𝟎 𝟏 𝟎 𝟎 𝟎 𝟏 𝟎 0 0 0 0
0 𝟎 𝟎 𝟏 𝟏 𝟎 𝟏 𝟎 𝟎 𝟎 𝟏 0 0 0 0
0 𝟎 𝟎 𝟎 𝟏 𝟏 𝟎 𝟏 𝟎 𝟎 𝟎 1 0 0 0
0 𝟎 𝟎 𝟎 𝟎 𝟏 𝟏 𝟎 𝟏 𝟎 𝟎 0 1 0 0
0 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟏 𝟎 𝟏 𝟎 0 0 1 0
0 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟏 𝟎 𝟏 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Selecting the columns with bold face ( as the weight of the 

columns is at least 2), the generator matrix Z1 is obtained in 

which any four columns are linearly independent. Thus  q=2, 

h = 8, v = w-1 =1 , l =10 and g = 4. Using Theorem 2 we 

obtain an OA(28,10,2,4). In this array all main effects are at 

least linear trend free. The design is listed in table 2. 

.3    BCH CODES : 

The BCH codes over GF(q) of length n = qm -1 and designed 

distance δ is the largest possible cyclic code having zeroes 

αb,,αb+1,…,αb+δ-2  where  α є GF( qm ) is the primitive nth root 

of unity, b is a non negative integer and m is the 

multiplicative order of q mod n.  

 The parity check matrix for a BCH code with b=1  is given 

by 
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C  =
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where each entry is replaced by the corresponding binary m-

tuple. 

Example 3 : Let n =15, δ = 7. Then the   matrix C  of        

(15, 5, 7)2 code is given as  

C =     

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1
1 0 0 0 1 1 0 0 0 1 1 0 0 0 1
0 0 0 1 1 0 0 0 0 1 0 0 0 1 1
0 0 1 0 1 0 0 1 1 1 0 0 1 0 1
0 1 1 1 1 0 1 1 1 1 0 1 1 1 1
1 0 1 1 0 1 1 0 0 1 0 1 1 0 1
0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
𝟎 𝟏 𝟏 𝟎 𝟏 𝟏 𝟎 𝟏 𝟏 𝟎 𝟏 𝟏 𝟎 𝟏 𝟏
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Deleting the rows (with bold face) being the row of all 

zeroes and a repeated row, we get the parity check matrix Z2 

in which any six columns are linearly independent. This 

matrix satisfies the condition of theorem 2 with q=2, h=10, 

w=3, l = 15. The design obtained has all main effects at least 

linear trend free and is listed in  table 2 . 

4.4    MDS CODES : 

A linear code C[n, k, d]q with  d= n-k+1  is called  maximum 

distance  separable code.  If  C[n,k,d]q  is  MDS code,  then  

the  dual code C┴  is  a linear  [n, n-k, k+1]q MDS code. 

Every  k columns of a generator matrix G are linearly 

independent  or every (n-k) columns of parity check matrix 

are linearly independent. An [n,k,d]q code  C with generator 

matrix G = [ I | B ], where B is a k × (n-k) matrix, is MDS iff 

every square submatrix (formed by any i rows and i 

columns) for any i = 1,2,……,min{k,n-k} of B is non 

singular. 

Example 4: For q = 5  consider the parity check of [8,4,5]5 

code  in which any four columns are independent                 

𝑮𝟐 = �
1 0 0 0 𝟏 𝟏 𝟏 𝟏
0 1 0 0 𝟏 𝟐 𝟑 𝟒
0 0 1 0 𝟏 𝟑 𝟒 𝟎
0 0 0 1 𝟏 𝟒 𝟎 𝟎

� 

Retaining the columns with bold face i.e. with weight ≥ 2, 

we get the matrix Z3   and using the  method    we obtain  a 

symmetric  orthogonal array with parameters   q = 5, h = 4, g 

=4, w = 2, l = 4. The design obtained has all main effects     

linear trend free.and  is listed in table 2. 

Example 5:  let  q=7 , the parity check of [12,6,7]7 MDS 

code, in which any six  columns are linearly independent is 

given below  

𝑮𝟑 =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0 𝟏 𝟏 𝟏 𝟏 𝟏 𝟏
0 1 0 0 0 0 𝟏 𝟑 𝟔 𝟒 𝟐 𝟓
0 0 1 0 0 0 𝟏 𝟔 𝟒 𝟐 𝟓 𝟎
0 0 0 1 0 0 𝟏 𝟒 𝟐 𝟓 𝟎 𝟎
0 0 0 0 1 0 𝟏 𝟐 𝟓 𝟎 𝟎 𝟎
0 0 0 0 0 1 𝟏 𝟓 𝟎 𝟎 𝟎 0⎦

⎥
⎥
⎥
⎥
⎤

 

Taking the columns with weight ≥ 2, we get the generator 

matrix  Z4 , and using the  method    we obtain  a symmetric  

orthogonal array with parameters  q = 7, h = 6, g = 6, w  = 

2, l = 4. Further all main effects in the design are linear 

trend free. 

4.5   TERNARY GOLAY CODE: 

 [11,6,5]3 is a linear code over a ternary  alphabet,    the 

relative distance of the codes is as large as it possibly can be 

for a ternary code, and   hence   the   ternary   Golay   code is 

a   perfect code.  

Example 6: The parity check matrix of  [11,6,5]3  Golay 

code is given as  

H1 =     

⎣
⎢
⎢
⎢
⎡
𝟏 𝟏 𝟏 𝟐 𝟐 𝟎 1 0 0 0 0
𝟏 𝟏 𝟐 𝟏 𝟎 𝟐 0 1 0 0 0
𝟏 𝟐 𝟏 𝟎 𝟏 𝟐 0 0 1 0 0
𝟏 𝟐 𝟎 𝟏 𝟐 𝟏 0 0 0 1 0
𝟏 𝟎 𝟐 𝟐 𝟏 𝟏 0 0 0 0 1⎦

⎥
⎥
⎥
⎤
  

Selecting the columns (with bold face) i.e. weight ≥ 4,  we 

get the matrix Z5 in which  any four columns are  linearly 

independent and using the  method    we obtain  a symmetric  

orthogonal array with parameters  q = 3,  h =5, l = 6 ,  g = 3, 

w = 4,  Z5 generates the design  in which  all main  effects 

are  3-trend free.  
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Table 2 lists the parameters of the trend free linear 

symmetric orthogonal arrays generated using Theorem 2 and 

above described Linear codes. 

Table 2: Trend free Symmetric Orthogonal Arrays based on  
different codes 

Type of the 
code 

Parameters 
of the code 

Trend free 
symmetric 
orthogonal 

arrays 

Degree of 
trend free 
for main 
effects in 
symmetric 
orthogonal  

arrays 

REED 
MULLER 

code 

RM(2,4) OA(25,11,2,3) 

 

Linear* 

Cyclic Code ( 15,7,5)2 OA(28,10,2,4) 

 

Linear* 

 

BCH code ( 15,5,7)2 OA(210,15,2,5) 

 

Linear* 

 

MDS code (8,4,5)5  

(12,6,7)7 

OA(54,4,5 4) 

OA(76,6,7,6) 

 

Linear 

Linear 

GOLAY 
code 

(11,6,5)3 OA(35, 6 ,3,4) 

 

Linear* 

*indicates that main effects are trend free for higher 
order also. 

5. TREND FREE RUN ORDERS FOR ASYMMETRIC 

ORTHOGONAL ARRAYS  

Asymmetric orthogonal arrays are inevitable in many 

experimental situations and thus it is important to study the  

trend freeness property of asymmetric orthogonal arrays. 

Trend free run orders for asymmetric orthogonal arrays can 

also be obtained from the parity check matrix of a linear 

[n,k,d]q code. Using the  matrices obtained from linear codes 

in Section 4, trend free run orders for asymmetric orthogonal 

arrays can be constructed. 

Consider an OA(N, l, 1q × 2q × ……× nq , g) whose 

columns are called as factors denoted by F1,F2,…,Fl. Also 

consider GF(q), of order q, where  q  is a prime or prime 

power. For the factor Fi   (1 ≤ i ≤  l) define ui  columns, say 

𝑝𝑖1 ,𝑝𝑖2 , … , 𝑝𝑖𝑢𝑖 , each of order h  × 1 with elements from 

GF(q). Thus for the  l  factors we have in all ∑ 𝑢𝑖𝑙
𝑖=1  columns 

We state the theorem proved in [2] to construct an 

asymmetric orthogonal array 

Theorem 4:   Let M be the h × l matrix, where l = ∑𝑢𝑖𝑗  and    

h  ≥ ∑𝑢𝑖𝑗  such that any d −1  columns of  M are linearly 

independent. Then M can be partitioned as M = 

[ 𝐴1 𝐴2 …𝐴𝑙 ], where  𝐴𝑖 = [ 𝑝𝑖1  𝑝𝑖2 …𝑝𝑖𝑢𝑖], 1≤  i ≤  l. Then 

for each of the matrices [ 𝐴𝑖1  𝐴𝑖2 …𝐴𝑖𝑔 ]; where g  ≤  d − 2, 

out of  𝐴1   𝐴2  …  𝐴𝑙  the   h × ∑𝑢𝑖𝑗   matrix [ 𝐴𝑖1  𝐴𝑖2 …𝐴𝑖𝑔 ] 

has full column rank over GF(q), Then an  𝑂𝐴( 𝑞ℎ , 𝑙,𝑞𝑢1 ×

𝑞𝑢2 × …𝑞𝑢𝑙 ,𝑔), can be constructed. 

Using Theorem 4 with the construction technique we state 

the following theorem for construction of trend free 

asymmetric orthogonal arrays using parity check matrix of 

linear code. 

 Theorem 5: Existence of a linear [n, k, d]q code implies the 

existence of an asymmetric 𝑂𝐴( 𝑞ℎ , 𝑙, 𝑞𝑢1 × 𝑞𝑢2 × …𝑞𝑢𝑙 ,𝑔), 

where  h= n-k, g ≤ d-2 and l is the number of columns with 

weight ≥ w , in which all main effects are (w-1)-trend free.  

The technique of construction can be explained with the help 

of following example. 

Example 7: Consider the matrix M obtained in Example 1. 

Represent M as ]...[ 1121 MMM , where iM ; 1 ≤ i ≤11  

denotes the thi  column of matrix M. 

To construct an orthogonal array OA( 52 ,10,(22) × 29, 2) we 

choose the following matrices, corresponding to the factors 

of the array. 

A1 =

⎣
⎢
⎢
⎢
⎡
1 0
1 0
1 1
1 1
1 1⎦

⎥
⎥
⎥
⎤
  = [ M1 M2 ] ,    Ai = Mi+1     2 ≤  i   ≤  9 

The  condition  of  the Theorem 4  is   always satisfied  for    

g = 2 by the above matrix M. This   can also be  shown  with 

above choices of  Ai matrices corresponding to the 10 

factors.  
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(i) Let i = 1 and j ∈ { 2, 3, …, 10} ; i ≠ j. For this  

choice of indices i, j the matrix [𝐴𝑖  ,𝐴𝑗  ] will 

always have rank 2 since any 3 or fewer 

columns of  M  are linearly independent. 

(ii) Let i, j ∈ { 2, 3, ... , 10} ; i ≠ j. For this choice of 

the indices i and j, the matrix [𝐴𝑖  ,𝐴𝑗  ] will 

always  have rank 2, because any 3 columns of 

the matrix M are linearly independent. 

Thus in each case the conditions  of Theorem 4  are satisfied 

and the desired orthogonal array can be constructed by 

Computing W′M where W is possible distinct choices of ξ 

and ξ is a 25 ×1vector with enteries from GF(2). Further 

replacing the 4 combinations (00), (01), (10), (11) under the 

first two columns by 4 distinct symbols 0, 1, 2, 3 respectively 

we get an OA( 25 ,10,(22) × 29, 2) shown in   Table 3. Here 

we observe that the run order for column (factor) A1  with 4 

symbols  (with bold face) is also linear trend free (as time 

count = 0) with the other remaining nine columns(factors), 

Ai i=2,3…,10 Thus we get trend free run order for 

asymmetric orthogonal array OA(25 ,10,(22) × 29, 2) in which 

all the main effects are  linear trend free.  

Table 4 lists all the possible   linear trend free asymmetric 

orthogonal arrays generated using theorem 4  and the codes 

mentioned in section 4. 

 

          Table 3: Linear Trend free  OA(25 ,10,(22) × 29, 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 
00→ 0 0 0 0 0 0 0 0 0 0 
10→ 2 0 1 0 1 1 0 1 1 1 
10→ 2 1 0 1 0 1 1 0 1 1 
00→ 0 1 1 1 1 0 1 1 0 0 
11→ 3 0 0 1 1 0 1 1 0 1 
01→ 1 0 1 1 0 1 1 0 1 0 
01→ 1 1 0 0 1 1 0 1 1 0 
11→ 3 1 1 0 0 0 0 0 0 1 
11→ 3 1 1 0 0 0 1 1 1 0 
01→ 1 1 0 0 1 1 1 0 0 1 
01→ 1 0 1 1 0 1 0 1 0 1 
11→ 3 0 0 1 1 0 0 0 1 0 
00→ 0 1 1 1 1 0 0 0 1 1 
00→ 2 1 0 1 0 1 0 1 0 0 
00→ 2 0 1 0 1 1 1 0 0 0 
00→ 0 0 0 0 0 0 1 1 1 1 
11→ 3 1 1 1 1 1 0 0 0 0 
11→ 1 1 0 1 0 0 0 1 1 1 
11→ 1 0 1 0 1 0 1 0 1 1 
11→ 3 0 0 0 0 1 1 1 0 0 
00→ 0 1 1 0 0 1 1 1 0 1 
10→ 2 1 0 0 1 0 1 0 1 0 
10→ 2 0 1 1 0 0 0 1 1 0 
00→ 0 0 0 1 1 1 0 0 0 1 
00→ 0 0 0 1 1 1 1 1 1 0 
10→ 2 0 1 1 0 0 1 0 0 1 
10→ 2 1 0 0 1 0 0 1 0 1 
00→ 0 1 1 0 0 1 0 0 1 0 
11→ 3 0 0 0 0 1 0 0 1 1 
01→ 1 0 1 0 1 0 0 1 0 0 
01→ 1 1 0 1 0 0 1 0 0 0 
11→ 3 1 1 1 1 1 1 1 1 1 

T.C   0 0 0 0 0 0 0 0 0 0 
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Table 4: Trend free  Asymmetric Orthogonal Arrays based  

On different codes 

 

*Indicates that the designs are trend free for higher order 
also 

CONCLUSION:  We  give  a systematic method  to 

construct trend free symmetric and asymmetric orthogonal 

arrays  using  the  parity check matrix of  linear  code. This 

method  can  be  used  easily  to generate  the  arrays  with  

higher level in which all main effects are with higher degree 

of trend freeness . 
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